Machine learning with deep neural networks (DNNs) has become one of the foundation techniques in many safety-critical systems, such as autonomous vehicles and medical diagnosis systems. DNN-based systems, however, are known to be vulnerable to adversarial examples (AEs) that are maliciously perturbed variants of legitimate inputs. While there has been a vast body of research to defend against AE attacks in the literature, the performances of existing defense techniques are still far from satisfactory, especially for adaptive attacks, wherein attackers are knowledgeable about the defense mechanisms and craft AEs accordingly. In this work, we propose a multilayer defense-in-depth framework for AE detection, namely MixDefense. For the first layer, we focus on those AEs with large perturbations. We propose to leverage the `noise' features extracted from the inputs to discover the statistical difference between natural images and tampered ones for AE detection. For AEs with small perturbations, the inference result of such inputs would largely deviate from their semantic information. Consequently, we propose a novel learning-based solution to model such contradictions for AE detection. Both layers are resilient to adaptive attacks because there do not exist gradient propagation paths for AE generation. Experimental results with various AE attack methods on image classification datasets show that the proposed MixDefense solution outperforms the existing AE detection techniques by a considerable margin.


翻译:与深层神经网络(DNNS)一起学习深层神经网络(DNNS)的机器已成为许多安全关键系统中的基础技术之一,例如自主车辆和医疗诊断系统。但是,据知DNN的系统很容易受到敌对例子(AEs)的伤害,这些例子是恶意干扰合法投入的变体。虽然在文献中有大量研究来防范AE攻击,但现有防御技术的性能仍然远远不能令人满意,特别是在适应性攻击方面,攻击者了解防御机制,并因此设计AE系统。在这项工作中,我们提议建立一个多层防御深度的AE探测框架,即MixDefence。在第一层,我们把重点放在那些具有大扰动性、具有敌意的AE系统。我们提议利用从投入中提取的“噪音”特征来发现自然图像与AE系统探测的被篡改的图像之间的统计差异。对于适应性攻击,这种投入的推断结果将在很大程度上偏离其语义信息分类。因此,我们提议一个基于新学习的ADixDefro development roal E roal a developing rodistration the developing the rodistration A development a degresgress the the squts the degrestiquestation a degresmstrational a degregy a drovilational a drogres a droutes.

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
18+阅读 · 2020年10月9日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员