We study the problem of low-rank matrix completion for symmetric matrices. The minimum rank of a completion of a generic partially specified symmetric matrix depends only on the location of the specified entries, and not their values, if complex entries are allowed. When the entries are required to be real, this is no longer the case and the possible minimum ranks are called typical ranks. We give a combinatorial description of the patterns of specified entires of $n\times n$ symmetric matrices that have $n$ as a typical rank. Moreover, we describe exactly when such a generic partial matrix is minimally completable to rank $n$. We also characterize the typical ranks for patterns of entries with low maximal typical rank.
翻译:我们研究对称矩阵的低级别矩阵完成问题。 通用部分指定的对称矩阵完成的最低等级仅取决于特定条目的位置,如果允许复杂的条目,则不取决于其价值。 当要求条目真实时,情况就不再是这种情况,可能的最低等级被称为典型等级。 我们对特定整数的组合描述,即美元乘以n/ times n$ symeter 矩阵,该整数以美元计为典型等级。 此外,我们准确地描述这种通用部分矩阵在什么情况下最起码可以被折成美元。 我们还对最低标准级的条目的典型等级进行定性。