Characterizing the importances (i.e., centralities) of nodes in social, biological, and technological networks is a core topic in both network science and data science. We present a linear-algebraic framework that generalizes eigenvector-based centralities, including PageRank and hub/authority scores, to provide a common framework for two popular classes of multilayer networks: multiplex networks (which have layers that encode different types of relationships) and temporal networks (in which the relationships change over time). Our approach involves the study of joint, marginal, and conditional "supracentralities" that one can calculate from the dominant eigenvector of a supracentrality matrix [Taylor et al., 2017], which couples centrality matrices that are associated with individual network layers. We extend this prior work (which was restricted to temporal networks with layers that are coupled by adjacent-in-time coupling) by allowing the layers to be coupled through a (possibly asymmetric) interlayer-adjacency matrix $\tilde{{\bf A}}$, where the entry $\tilde{A}_{tt'} \geq 0$ encodes the coupling between layers $t$ and $t'$. Our framework provides a unifying foundation for centrality analysis of multiplex and temporal networks; it also illustrates a complicated dependency of the supracentralities on the topology and weights of interlayer coupling. By scaling $\tilde{{\bf A}}$ by an interlayer-coupling strength $\omega\ge0$ and developing a singular perturbation theory for the limits of weak ($\omega\to0^+$) and strong coupling ($\omega\to\infty$), we also reveal an interesting dependence of supracentralities on the dominant left and right eigenvectors of $\tilde{{\bf A}}$.
翻译:将节点在社会、生物和技术网络中的重要性( 即, 中心) 定性为社会、 生物和技术网络中的核心议题。 我们的方法是研究联合、 边际和有条件的“ 超中心”, 以便从超集中矩阵( Taylor et al., 2017) 的支配性理论中计算出一个线性数值框架, 包括PageRank 和中枢/权限评分, 以提供一个共同的框架, 为两个受欢迎的多层网络提供共同的框架: 多层网络( 具有分解不同类型关系的层 ) 和时间网络( 关系随时间变化 ) 。 我们的方法是研究联合、 边际和有条件的“ 超集中”, 从超集中矩阵( Tayloral et al. 2017) 的主导性理论中计算出来。 我们扩展了之前的工作( 限于时间网络, 与相近时间连接的层 ), 通过一个( 可能不对称的) 跨层对齐的 双对基级( tillegeelegelege) ent) entalflegelge fate fate extial extical exticreal extiquestal extiquestaltiquestaltiquestaltitudeal ent) a.