Gaussian process regression (GPR) has been a well-known machine learning method for various applications such as uncertainty quantifications (UQ). However, GPR is inherently a data-driven method, which requires sufficiently large dataset. If appropriate physics constraints (e.g. expressed in partial differential equations) can be incorporated, the amount of data can be greatly reduced and the accuracy further improved. In this work, we propose a hybrid data driven-physics constrained Gaussian process regression framework. We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach. We apply deep kernel learning method. The proposed model learns from both data and physics constraints through the training of a deep neural network, which serves as part of the covariance function in GPR. The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
翻译:Gausian进程回归(GPR)是各种应用,如不确定性量化(UQ)的一个众所周知的机器学习方法。然而,GPR本质上是一种数据驱动方法,需要足够大的数据数据集。如果可以纳入适当的物理限制(例如以部分差异方程式表示),数据数量可以大大降低,准确性可以进一步提高。在这项工作中,我们建议采用混合数据驱动物理学限制Gaussian进程回归框架。我们用Boltzmann-Gibbs分布法编码物理学知识,并通过最大可能性(ML)法获取我们的模型。我们采用了深内核学习方法。拟议模型通过培训深神经网络,从数据和物理限制中学习,而深神经网络是GPR共变功能的一部分。拟议模型在高维问题中取得良好效果,并正确传播不确定性,所提供的标注数据非常有限。