We present a set of metrics intended to supplement designer intuitions when designing swarm-robotic systems, increase accuracy in extrapolating swarm behavior from algorithmic descriptions and small test experiments, and lead to faster and less costly design cycles. We build on previous works studying self-organizing behaviors in autonomous systems to derive a metric for swarm emergent self-organization. We utilize techniques from high performance computing, time series analysis, and queueing theory to derive metrics for swarm scalability, flexibility to changing external environments, and robustness to internal system stimuli such as sensor and actuator noise and robot failures. We demonstrate the utility of our metrics by analyzing four different control algorithms in two scenarios: an indoor warehouse object transport scenario with static objects and a spatially unconstrained outdoor search and rescue scenario with moving objects. In the spatially constrained warehouse scenario, efficient use of space is key to success so algorithms that use mechanisms for traffic regulation and congestion reduction are the most appropriate. In the search and rescue scenario, the same will happen with algorithms which can cope well with object motion through dynamic task allocation and randomized search trajectories. We show that our intuitions about comparative algorithm performance are well supported by the quantitative results obtained using our metrics, and that our metrics can be synergistically used together to predict collective behaviors based on previous results in some cases.
翻译:我们提出一套衡量标准,旨在补充设计设计设计者在设计群温-色调系统时的直觉,提高从算法描述和小型试验实验中推断群情行为的准确性,导致设计周期更快、成本较低。我们以以前研究自主系统中自我组织行为的工作为基础,为群温突发自我组织制定衡量标准。我们利用高性能计算、时间序列分析和排队理论等技术,为群温缩缩缩缩缩放、适应变化的外部环境的灵活性以及内部系统振动(如感应器和动动器噪音和机器人故障)的稳健性等制定衡量标准。我们通过在两种情况下分析四种不同的控制算法来展示我们的衡量标准的效用:室内仓储物体运输方案,带有静态物体,以及空间上不受限制的室外搜索和救援方案,以及移动物体。在空间受限制的仓储假设中,高效使用空间是成功的关键,因此,使用交通调节和减少拥堵的机制是最合适的。在搜索和救援假设情景中,同样也会发生这样的情况:我们通过动态任务分配和动态任务分配来很好地应对物体运动运动运动运动运动动作的算结果。我们以前使用的比较性分析结果,我们用了用来用来用来预测的计算结果。