There is tremendous global enthusiasm for research, development, and deployment of autonomous vehicles (AVs), e.g., self-driving taxis and trucks from Waymo and Baidu. The current practice for testing AVs uses virtual tests-where AVs are tested in software simulations-since they offer a more efficient and safer alternative compared to field operational tests. Specifically, search-based approaches are used to find particularly critical situations. These approaches provide an opportunity to automatically generate tests; however, systematically creating valid and effective tests for AV software remains a major challenge. To address this challenge, we introduce scenoRITA, a test generation approach for AVs that uses evolutionary algorithms with (1) a novel gene representation that allows obstacles to be fully mutable, hence, resulting in more reported violations, (2) 5 test oracles to determine both safety and motion sickness-inducing violations, and (3) a novel technique to identify and eliminate duplicate tests. Our extensive evaluation shows that scenoRITA can produce effective driving scenarios that expose an ego car to safety critical situations. scenoRITA generated tests that resulted in a total of 1,026 unique violations, increasing the number of reported violations by 23.47% and 24.21% compared to random test generation and state-of-the-art partially-mutable test generation, respectively.
翻译:研究、开发和部署自主车辆(AVs)的全球热情巨大,例如自驾驶出租车和Waymo和Baidu的卡车。目前AV的测试做法使用虚拟测试,在软件模拟中测试AV,因为与实地操作测试相比,AV是一种更高效、更安全的替代方法。具体地说,以搜索为基础的方法用来寻找特别关键的情况。这些方法为自动生成测试提供了机会;然而,系统地为AV软件创建有效和有效的测试仍然是一个重大挑战。为了应对这一挑战,我们引入了ScenoRITA,这是AV的测试生成方法,它使用演化算法,使用:(1) 新型基因代表法,允许障碍完全变异,从而导致更多的违规报告,(2) 5个测试或触觉,用以确定安全和感病的违规行为,(3) 发现和消除重复测试的新技术。我们的广泛评价表明,ScenoRITA可以产生有效的驱动情景,使自驾驶汽车暴露在安全危急情况下。ScenoRITA的测试产生了测试结果,导致总共1 026个独特违规情况,从而导致更多的侵犯率为23年期的随机测试次数。