In spite of the new opportunities brought about by the Open RAN, advances in ML-based network automation have been slow, mainly because of the unavailability of large-scale datasets and experimental testing infrastructure. This slows down the development and widespread adoption of Deep Reinforcement Learning (DRL) agents on real networks, delaying progress in intelligent and autonomous RAN control. In this paper, we address these challenges by proposing practical solutions and software pipelines for the design, training, testing, and experimental evaluation of DRL-based closed-loop control in the Open RAN. We introduce ColO-RAN, the first publicly-available large-scale O-RAN testing framework with software-defined radios-in-the-loop. Building on the scale and computational capabilities of the Colosseum wireless network emulator, ColO-RAN enables ML research at scale using O-RAN components, programmable base stations, and a "wireless data factory". Specifically, we design and develop three exemplary xApps for DRL-based control of RAN slicing, scheduling and online model training, and evaluate their performance on a cellular network with 7 softwarized base stations and 42 users. Finally, we showcase the portability of ColO-RAN to different platforms by deploying it on Arena, an indoor programmable testbed. Extensive results from our first-of-its-kind large-scale evaluation highlight the benefits and challenges of DRL-based adaptive control. They also provide insights on the development of wireless DRL pipelines, from data analysis to the design of DRL agents, and on the tradeoffs associated to training on a live RAN. ColO-RAN and the collected large-scale dataset will be made publicly available to the research community.


翻译:尽管开放网络网络带来了新的机遇,但基于ML的网络自动化进展缓慢,主要原因是没有大规模数据集和实验测试基础设施,这减缓了深强化学习代理商在实际网络的开发和广泛采用,推迟了智能和自主RAN控制的进展。在本文中,我们通过在开放网络中提出设计、培训、测试和实验性评价基于DRL的闭路控制的实用解决方案和软件管道来应对这些挑战。我们引入了ColO-RAN,这是第一个公开提供的大规模ORA-RAN测试框架,有软件定义的无线运行测试。在Colosseum无线网络模拟器的规模和计算能力上,ColO-RAN使ML能够利用O-RA的组件、可编程基站和“无线数据工厂”进行规模研究。 我们设计和开发了三个基于DRAN的在线软磁盘、列表和在线在线测试框架测试框架测试框架测试框架测试框架,并且通过我们42个软磁盘用户的大规模数据库数据库数据库数据库数据库和网络的升级分析,还将通过我们数据库数据库数据库数据库数据库数据库数据库数据库向不同数据库数据库数据库数据库数据库数据库数据库数据库数据库的升级数据库数据库数据库收集。

0
下载
关闭预览

相关内容

实验室论文被ACM CSUR录用
inpluslab
10+阅读 · 2019年6月25日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
3+阅读 · 2018年10月8日
VIP会员
相关VIP内容
相关资讯
实验室论文被ACM CSUR录用
inpluslab
10+阅读 · 2019年6月25日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员