Recently, with the rapid deployment of service APIs, personalized service recommendations have played a paramount role in the growth of the e-commerce industry. Quality-of-Service (QoS) parameters determining the service performance, often used for recommendation, fluctuate over time. Thus, the QoS prediction is essential to identify a suitable service among functionally equivalent services over time. The contemporary temporal QoS prediction methods hardly achieved the desired accuracy due to various limitations, such as the inability to handle data sparsity and outliers and capture higher-order temporal relationships among user-service interactions. Even though some recent recurrent neural-network-based architectures can model temporal relationships among QoS data, prediction accuracy degrades due to the absence of other features (e.g., collaborative features) to comprehend the relationship among the user-service interactions. This paper addresses the above challenges and proposes a scalable strategy for Temporal QoS Prediction using Multi-source Collaborative-Features (TPMCF), achieving high prediction accuracy and faster responsiveness. TPMCF combines the collaborative-features of users/services by exploiting user-service relationship with the spatio-temporal auto-extracted features by employing graph convolution and transformer encoder with multi-head self-attention. We validated our proposed method on WS-DREAM-2 datasets. Extensive experiments showed TPMCF outperformed major state-of-the-art approaches regarding prediction accuracy while ensuring high scalability and reasonably faster responsiveness.


翻译:近年来,随着服务API的快速部署,个性化服务推荐在电子商务行业中扮演着至关重要的角色。决定服务性能的服务质量(QoS)参数经常用于推荐,随着时间的推移波动也很大。因此,QoS预测对于在功能相当的服务中确定合适的服务是至关重要的。然而,考虑到对数据稀疏性、异常值和捕获用户服务交互的高阶时间关系等方面的各种限制,当代的时间QoS预测方法几乎没有达到预期的准确度。即使一些最近的循环神经网络架构可以模拟QoS数据之间的时间关系,由于缺乏其他特征(例如合作特征)来理解用户服务交互之间的关系,预测准确度会降低。本文提出了一种可伸缩的方法,利用多源合作特征进行时间QoS预测(TPMCF),以实现高预测准确度和更快的响应速度。TPMCF通过利用用户/服务的协作特征并利用图卷积和多头自注意力转换编码器来实现自动提取的时空特征,结合用户服务关系。我们在WS-DREAM-2数据集上验证了我们的方法。大量实验表明,TPMCF在保证高伸缩性和较快响应速度的同时,优于主要的最新方法在预测准确度方面的表现。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2020年9月25日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
跨域推荐最新前沿工作进展汇总
机器学习与推荐算法
0+阅读 · 2022年9月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
12+阅读 · 2021年5月3日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2020年9月25日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员