The deployment of federated learning in a wireless network, called federated edge learning (FEEL), exploits low-latency access to distributed mobile data to efficiently train an AI model while preserving data privacy. In this work, we study the spatial (i.e., spatially averaged) learning performance of FEEL deployed in a large-scale cellular network with spatially random distributed devices. Both the schemes of digital and analog transmission are considered, providing support of error-free uploading and over-the-air aggregation of local model updates by devices. The derived spatial convergence rate for digital transmission is found to be constrained by a limited number of active devices regardless of device density and converges to the ground-true rate exponentially fast as the number grows. The population of active devices depends on network parameters such as processing gain and signal-to-interference threshold for decoding. On the other hand, the limit does not exist for uncoded analog transmission. In this case, the spatial convergence rate is slowed down due to the direct exposure of signals to the perturbation of inter-cell interference. Nevertheless, the effect diminishes when devices are dense as interference is averaged out by aggressive over-the-air aggregation. In terms of learning latency (in second), analog transmission is preferred to the digital scheme as the former dramatically reduces multi-access latency by enabling simultaneous access.


翻译:在无线网络中部署联盟式学习,称为联合边际学习,利用分布式移动数据的低延迟访问,有效培训AI模型,同时保护数据隐私;在这项工作中,我们研究空间(即空间平均d)学习在使用空间随机分布装置的大型蜂窝网络中部署的感觉的学习性能;考虑数字和模拟传输计划,支持无误上传和通过装置对本地模型更新进行超空汇总;数字传输的衍生空间趋同率因有限的有效设备数量而受到限制,而不论设备密度如何,随着数量增长而迅速与地对地率趋同;在这项工作中,我们研究空间(即空间平均d)在空间(即空间平均)中学习在网络参数上的表现,如处理收益和信号到干扰的分解码阈值。另一方面,对于未编码的模拟传输,没有限制;在这种情况下,由于信号直接暴露到细胞间干扰,因此空间趋同率下降;然而,由于干扰程度的密集度降低,设备因干扰程度,通过先导式访问,先导式传输到后,先导式传输,其次级性递减。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
3+阅读 · 2020年5月1日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年8月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员