"How can we animate 3D-characters from a movie script or move robots by simply telling them what we would like them to do?" "How unstructured and complex can we make a sentence and still generate plausible movements from it?" These are questions that need to be answered in the long-run, as the field is still in its infancy. Inspired by these problems, we present a new technique for generating compositional actions, which handles complex input sentences. Our output is a 3D pose sequence depicting the actions in the input sentence. We propose a hierarchical two-stream sequential model to explore a finer joint-level mapping between natural language sentences and 3D pose sequences corresponding to the given motion. We learn two manifold representations of the motion -- one each for the upper body and the lower body movements. Our model can generate plausible pose sequences for short sentences describing single actions as well as long compositional sentences describing multiple sequential and superimposed actions. We evaluate our proposed model on the publicly available KIT Motion-Language Dataset containing 3D pose data with human-annotated sentences. Experimental results show that our model advances the state-of-the-art on text-based motion synthesis in objective evaluations by a margin of 50%. Qualitative evaluations based on a user study indicate that our synthesized motions are perceived to be the closest to the ground-truth motion captures for both short and compositional sentences.
翻译:“我们如何从一部电影脚本中将3D字字符化成一个3D字字符,或者通过简单地告诉他们我们想要他们做什么来移动机器人呢?” “我们如何不结构又复杂,我们如何能用它来做一个句子和仍然能产生貌似运动呢?” 这些问题需要长期解答,因为球场还处于萌芽阶段。受这些问题的启发,我们展示了产生组成动作的新方法,它处理复杂的输入句子。我们的输出是一个显示输入句中动作的3D构成序列。我们提出一个等级分级的双流顺序模型,以探索自然语言句子和3D之间更精细的联合动作图谱,与给定的动作相对应的顺序。我们从两个方面了解了该运动的多层次结构,一个是关于上部和下部运动的。我们的模型可以产生描述短句子,描述单项动作以及描述多个相继和叠加的动作。我们根据公开提供的 KIT Motion-Langage DD 数据集中包含3D附加的句子。 实验性结果显示我们以最接近的版本的版本版本的文本评价, 显示我们以最接近的模型的版本的版本的版本的版本。