Quantum-enhanced machine learning is a rapidly evolving field that aims to leverage the unique properties of quantum mechanics to enhance classical machine learning. However, the practical applicability of these methods remains an open question, particularly beyond the context of specifically-crafted toy problems, and given the current limitations of quantum hardware. This study focuses on quantum kernel methods in the context of classification tasks. In particular, it examines the performance of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) in connection with two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap. Remarkably, these feature maps have been proposed in the literature under the conjecture of possible near-term quantum advantage and have shown promising performance in ad-hoc datasets. In this study, we aim to evaluate their versatility and generalization capabilities in a more general benchmark, encompassing both artificial and established reference datasets. Classical machine learning methods, specifically Support Vector Machines (SVMs) and logistic regression, are also incorporated as baseline comparisons. Experimental results indicate that quantum methods exhibit varying performance across different datasets. Despite outperforming classical methods in ad-hoc datasets, mixed results are obtained for the general case among standard classical benchmarks. Our experiments call into question a general added value of applying QKT optimization, for which the additional computational cost does not necessarily translate into improved classification performance. Instead, it is suggested that a careful choice of the quantum feature map in connection with proper hyperparameterization may prove more effective.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月3日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员