We are concerned with random ordinary differential equations (RODEs). Our main question of interest is how uncertainties in system parameters propagate through the possibly highly nonlinear dynamical system and affect the system's bifurcation behavior. We come up with a methodology to determine the probability of the occurrence of different types of bifurcations (sub- vs super-critical) along a given bifurcation curve based on the probability distribution of the input parameters. In a first step, we reduce the system's behavior to the dynamics on its center manifold. We thereby still capture the major qualitative behavior of the RODEs. In a second step, we analyze the reduced RODEs and quantify the probability of the occurrence of different types of bifurcations based on the (nonlinear) functional appearance of uncertain parameters. To realize this major step, we present three approaches: an analytical one, where the probability can be calculated explicitly based on Mellin transformation and inversion, a semi-analytical one consisting of a combination of the analytical approach with a moment-based numerical estimation procedure, and a particular sampling-based approach using unscented transformation. We complement our new methodology with various numerical examples.


翻译:我们关心的是随机的普通差异方程式。 我们关心的主要问题是,系统参数的不确定性是如何通过可能高度非线性动态系统传播的,如何影响系统的双向行为。 我们想出一种方法,根据输入参数的概率分布,沿着一个特定的双向曲线,确定不同类型双向(子对超临界)的发生概率。 第一步,我们将系统的行为降低到其中心方形的动态。 因此,我们仍能捕捉到RODE的主要定性行为。 第二步,我们根据(非线性)参数的功能外观,分析减少的RODE并量化不同类型双向的发生概率。为了实现这一重大步骤,我们提出三种方法:分析方法,其中可以明确根据Mellin的变换和反向计算概率,半分析方法,包括将分析方法与基于瞬间的数字估计程序相结合,以及使用非点性变法的具体抽样方法。我们用新的数字方法补充了我们的各种数字示例。

0
下载
关闭预览

相关内容

【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员