Dual decomposition approaches in nonconvex optimization may suffer from a duality gap. This poses a challenge when applying them directly to nonconvex problems such as MAP-inference in a Markov random field (MRF) with continuous state spaces. To eliminate such gaps, this paper considers a reformulation of the original nonconvex task in the space of measures. This infinite-dimensional reformulation is then approximated by a semi-infinite one, which is obtained via a piecewise polynomial discretization in the dual. We provide a geometric intuition behind the primal problem induced by the dual discretization and draw connections to optimization over moment spaces. In contrast to existing discretizations which suffer from a grid bias, we show that a piecewise polynomial discretization better preserves the continuous nature of our problem. Invoking results from optimal transport theory and convex algebraic geometry we reduce the semi-infinite program to a finite one and provide a practical implementation based on semidefinite programming. We show, experimentally and in theory, that the approach successfully reduces the duality gap. To showcase the scalability of our approach, we apply it to the stereo matching problem between two images.
翻译:非混凝土优化中的两维分解方法可能存在双重性差距。 当直接将其应用于具有连续状态空间的Markov随机场(MRF)中的MAP- 随机场(MRF)等非混凝土问题时, 这会构成挑战。 为了消除这些差距, 本文件考虑重新修改测量空间中的原非混凝土任务。 这个无限的维维次重新配制由半无限制的半无限制的半无限制方法近似于半无限制方法, 半无限制多边离散在双向线上获得。 我们提供一种几何直觉, 支持由双向离散导致的原始问题, 并将连接引向瞬间空间的优化。 与现有的存在电网偏差的离层相比, 我们表明, 片断的多面离散化更好地保护了我们问题的持续性质。 在引用最佳运输理论和二次相交错的等离子物理测量结果时, 我们将半无限制程序减为有限的一个, 并在半无限制程序的基础上提供实际执行。 我们实验和理论上显示, 这种方法成功地缩小了两极性差距。