We show that $VTC^0$, the basic theory of bounded arithmetic corresponding to the complexity class $\mathrm{TC}^0$, proves the $IMUL$ axiom expressing the totality of iterated multiplication satisfying its recursive definition, by formalizing a suitable version of the $\mathrm{TC}^0$ iterated multiplication algorithm by Hesse, Allender, and Barrington. As a consequence, $VTC^0$ can also prove the integer division axiom, and (by our previous results) the RSUV-translation of induction and minimization for sharply bounded formulas. Similar consequences hold for the related theories $\Delta^b_1$-$CR$ and $C^0_2$. As a side result, we also prove that there is a well-behaved $\Delta_0$ definition of modular powering in $I\Delta_0+WPHP(\Delta_0)$.
翻译:我们显示,$VTC$0, 与复杂等级相当的封闭计算基本理论, 即 $\ mathrm{TC ⁇ 0$, 证明了美元xIMUL$xiom, 表示整个迭代乘数满足其循环定义, 具体方法是由Hesse、 Allender 和 Barrington 正式确定一个适当版本的 $mathrm{TC ⁇ 0$ 迭代乘法。 结果, $VTC$0 也可以证明整数差xxiom, 以及( 根据我们先前的结果) 对严格结合的公式进行RSUV翻译和最小化。 相关理论的类似后果是 $\ Delta_ b_ 1 $- cR$ 和 $ C_ 0_ 2$ 。 作为附加结果, 我们还证明, 在 $I\ Delta_ 0+WPH(\ Delta_ 0) $ 中, 模块功率定义很好, 有 $\\ Delta_ 0美元 。