Given an $n$-vertex planar embedded digraph $G$ with non-negative edge weights and a face $f$ of $G$, Klein presented a data structure with $O(n\log n)$ space and preprocessing time which can answer any query $(u,v)$ for the shortest path distance in $G$ from $u$ to $v$ or from $v$ to $u$ in $O(\log n)$ time, provided $u$ is on $f$. This data structure is a key tool in a number of state-of-the-art algorithms and data structures for planar graphs. Klein's data structure relies on dynamic trees and the persistence technique as well as a highly non-trivial interaction between primal shortest path trees and their duals. The construction of our data structure follows a completely different and in our opinion very simple divide-and-conquer approach that solely relies on Single-Source Shortest Path computations and contractions in the primal graph. Our space and preprocessing time bound is $O(n\log |f|)$ and query time is $O(\log |f|)$ which is an improvement over Klein's data structure when $f$ has small size.


翻译:鉴于Klein提出了一个带有非负边缘重量的GG美元和面值为G$美元的数据结构,Klein展示了一个带有O(n\log n)美元空间和预处理时间的数据结构,该结构可以回答任何查询$(u,v)美元,用于最短路径距离,从美元到美元或从美元到美元或从美元到美元到美元(log n)时间的最短路径距离,条件是美元为美元。这个数据结构是规划图中一些最先进的算法和数据结构中的一个关键工具。Klein的数据结构依赖于动态树和持久性技术,以及原始最短路径树及其两侧之间的高度非三角互动。我们数据结构的构建遵循完全不同的、我们认为完全依赖单一来源短路径计算和原始图中的收缩的非常简单的分化方法。我们的空间和预处理时间绑定是$(nlog\\ f)$(nlog\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员