The problem of mismatched guesswork considers the additional cost incurred by using a guessing function which is optimal for a distribution $q$ when the random variable to be guessed is actually distributed according to a different distribution $p$. This problem has been well-studied from an asymptotic perspective, but there has been little work on quantifying the difference in guesswork between optimal and suboptimal strategies for a finite number of symbols. In this non-asymptotic regime, we consider a definition for mismatched guesswork which we show is equivalent to a variant of the Kendall tau permutation distance applied to optimal guessing functions for the mismatched distributions. We use this formulation to bound the cost of guesswork under mismatch given a bound on the total variation distance between the two distributions.
翻译:暂无翻译