Due to the different photosensitive properties of infrared and visible light, the registered RGB-T image pairs shot in the same scene exhibit quite different characteristics. This paper proposes a siamese infrared and visible light fusion Network (SiamIVFN) for RBG-T image-based tracking. SiamIVFN contains two main subnetworks: a complementary-feature-fusion network (CFFN) and a contribution-aggregation network (CAN). CFFN utilizes a two-stream multilayer convolutional structure whose filters for each layer are partially coupled to fuse the features extracted from infrared images and visible light images. CFFN is a feature-level fusion network, which can cope with the misalignment of the RGB-T image pairs. Through adaptively calculating the contributions of infrared and visible light features obtained from CFFN, CAN makes the tracker robust under various light conditions. Experiments on two RGB-T tracking benchmark datasets demonstrate that the proposed SiamIVFN has achieved state-of-the-art performance. The tracking speed of SiamIVFN is 147.6FPS, the current fastest RGB-T fusion tracker.
翻译:由于红外线和可见光的相光特性不同,在同一场景中拍摄的已登记的RGB-T成像配对图像具有非常不同的特性。本文件提议为RBG-T成像跟踪建立一个Siamese红外和可见光光聚变网络(SiamIV FNF),用于RBG-T成像跟踪。SiamIVFN包含两个主要的子网络:一个补充性地感集成网络(CFN)和一个贡献集成网络。CFFN使用一个双流多层共振动结构,每个层的过滤器部分结合了从红外图像和可见光图像中提取的特征。CFFN是一个地平级聚变网络,可以应对RGB-T成像对相的不匹配。通过适应性计算从CFFN获得的红外和可见光光特性的贡献,CAN在各种光条件下使跟踪器坚固。在两个RGB-T跟踪基准数据集上进行的实验表明,拟议的SiamIVFNF已经达到最新性性工作状态。SamIVFN的跟踪速度为147.6FS,这是目前最快的RGB-TU。