Federated learning is growing fast in academia and industries as a solution to solve data hungriness and privacy issues in machine learning. Being a widely distributed system, federated learning requires various system design thinking. To better design a federated learning system, researchers have introduced multiple patterns and tactics that cover various system design aspects. However, the multitude of patterns leaves the designers confused about when and which pattern to adopt. In this paper, we present a set of decision models for the selection of patterns for federated learning architecture design based on a systematic literature review on federated learning, to assist designers and architects who have limited knowledge of federated learning. Each decision model maps functional and non-functional requirements of federated learning systems to a set of patterns. We also clarify the trade-offs in the patterns. We evaluated the decision models by mapping the decision patterns to concrete federated learning architectures by big tech firms to assess the models' correctness and usefulness. The evaluation results indicate that the proposed decision models are able to bring structure to the federated learning architecture design process and help explicitly articulate the design rationale.


翻译:在学术界和行业中,联邦学习正在迅速发展,作为解决机器学习中数据饥饿和隐私问题的解决方案。作为一个分布广泛的系统,联邦学习需要各种系统设计思维。为了更好地设计联邦学习系统,研究人员采用了多种模式和战术,涵盖各种系统设计方面。然而,由于模式繁多,设计师对何时和采用哪种模式感到困惑。在本文件中,我们提出了一套选择联邦学习结构设计模式的决策模式,这些模式基于对联合学习的系统文献审查,以帮助对联邦学习知识了解有限的设计师和建筑师。每个决定模型都将联邦学习系统在功能和非功能方面的要求绘制成一套模式。我们还澄清了这些模式的权衡。我们通过绘制决策模式,评估大技术公司具体的联邦学习结构,以评估模型的正确性和有用性。评价结果表明,拟议的决定模式能够将结构引入联邦学习结构设计过程,并帮助明确阐述设计原理。我们通过绘制决策模式,对决策模式进行了评估,以具体确定大技术公司采用的联邦学习结构。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员