Dataset Distillation aims to distill an entire dataset's knowledge into a few synthetic images. The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data. Despite recent progress in the field, existing dataset distillation methods fail to generalize to new architectures and scale to high-resolution datasets. To overcome the above issues, we propose to use the learned prior from pre-trained deep generative models to synthesize the distilled data. To achieve this, we present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space. Our method augments existing techniques, significantly improving cross-architecture generalization in all settings.
翻译:数据集精炼旨在将整个数据集的知识浓缩到少量的合成图像中。其思想是生成少量的合成数据点,当给予学习算法作为训练数据时,会得到一种近似于在原始数据上训练的模型。尽管该领域最近取得了一些进展,但现有的数据集精炼方法仍然无法推广到新的体系结构并且难以扩展到高分辨率数据集。为了克服上述问题,我们提出使用预先训练的深度生成模型中学习到的先验知识来合成精炼数据。为实现这一目标,我们提出了一个新的优化算法,将大量图像浓缩成生成模型潜在空间中的少量中间特征向量。我们的方法补充了现有技术,显著提高了所有设置中的跨架构泛化能力。