In this work, we introduce X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing real-world claims. The dataset contains short statements in 25 languages and is labeled for veracity by expert fact-checkers. The dataset includes a multilingual evaluation benchmark that measures both out-of-domain generalization, and zero-shot capabilities of the multilingual models. Using state-of-the-art multilingual transformer-based models, we develop several automated fact-checking models that, along with textual claims, make use of additional metadata and evidence from news stories retrieved using a search engine. Empirically, our best model attains an F-score of around 40%, suggesting that our dataset is a challenging benchmark for evaluation of multilingual fact-checking models.
翻译:在这项工作中,我们引入了X-FACT(X-FACT):这是用于对自然存在的现实世界索赔进行事实核实的最大公开多语种数据集。该数据集包含25种语言的简短陈述,并被专家事实检查员贴上真实性标签。该数据集包括一个计量多语种模型外外的通用和零点能力的一个多语种评价基准。 我们使用最先进的多语种变压器模型,开发了几个自动事实核对模型,这些模型与文本要求一起,利用从利用搜索引擎检索的新闻报道中获取的额外元数据和证据。 简而言之,我们的最佳模型获得了大约40%的F-芯,这表明我们的数据集是评估多语种事实核对模型的具有挑战性的基准。