The recently introduced framework of universal inference provides a new approach to constructing hypothesis tests and confidence regions that are valid in finite samples and do not rely on any specific regularity assumptions on the underlying statistical model. At the core of the methodology is a split likelihood ratio statistic, which is formed under data splitting and compared to a cleverly selected universal critical value. As this critical value can be very conservative, it is interesting to mitigate the potential loss of power by careful choice of the ratio according to which data are split. Motivated by this problem, we study the split likelihood ratio test under local alternatives and introduce the resulting class of noncentral split chi-square distributions. We investigate the properties of this new class of distributions and use it to numerically examine and propose an optimal choice of the data splitting ratio for tests of composite hypotheses of different dimensions.
翻译:最近引入的普遍推论框架为构建假设测试和信任区提供了一种新的方法,这些假设测试和信任区在有限的样本中是有效的,并不依赖对基本统计模式的任何特定规律性假设。该方法的核心是,根据数据分解和与明智选择的通用关键值相比较而形成的一种不同的可能性比率统计。由于这一关键值可能非常保守,因此通过仔细选择数据分解比率来减轻可能的权力损失是有意义的。受这一问题的驱使,我们根据当地替代品研究不同的可能性比测试,并引入由此产生的非中央分裂的黑皮平方分布类别。我们调查了这一新类别分布的特性,并用它来从数字上审查和提出数据分解比率的最佳选择,用于测试不同层面的综合假设。