In the online multiple knapsack problem, an algorithm faces a stream of items, and each item has to be either rejected or stored irrevocably in one of $n$ bins (knapsacks) of equal size. The gain of an~algorithm is equal to the sum of sizes of accepted items and the goal is to maximize the total gain. So far, for this natural problem, the best solution was the $0.5$-competitive algorithm First Fit (the result holds for any $n \geq 2$). We present the first algorithm that beats this ratio, achieving the competitive ratio of $1/(1+\ln(2))-O(1/n) \approx 0.5906 - O(1/n)$. Our algorithm is deterministic and optimal up to lower-order terms, as the upper bound of $1/(1+\ln(2))$ for randomized solutions was given previously by Cygan et al. [TOCS 2016]. Furthermore, we show that the lower-order term is inevitable for deterministic algorithms, by improving their upper bound to $1/(1+\ln(2))-O(1/n)$.
翻译:在网上多个 knapsack 问题中, 算法面临一系列项目, 每个项目必须被否决或不可撤销地存储在相同大小的 $ bins (knapsacks) 中, 。 a~ algoithm 的收益等于被接受项目大小的总和, 目标是最大限度地增加总收益。 到目前为止, 对于这个自然问题, 最好的解决方案是 0.5 美元 的竞争性 complict complication First Fitt (结果为任何 $\ geq 2 ) 。 我们展示了第一个比这个比率强的算法, 达到 $/ (1 ⁇ ln(2))- O( 1/n) 的竞争性比率。 我们的算法具有确定性, 并且最优于较低排序条件, 因为 Cygan 等人 和 Al. [TOCS 2016] 先前给出了 1%/ ( 1ln(2)- O1/ n1) 。 此外, 我们显示, 确定性算法的下级术语是不可避免的, 。