Mid-air gestures serve as a common interaction modality across Extended Reality (XR) applications, enhancing engagement and ownership through intuitive body movements. However, prolonged arm movements induce shoulder fatigue, known as "Gorilla Arm Syndrome", degrading user experience and reducing interaction duration. Although existing ergonomic techniques derived from Fitts' law (such as reducing target distance, increasing target width, and modifying control-display gain) provide some fatigue mitigation, their implementation in XR applications remains challenging due to the complex balance between user engagement and physical exertion. We present AlphaPIG, a meta-technique designed to Prolong Interactive Gestures by leveraging real-time fatigue predictions. AlphaPIG assists designers in extending and improving XR interactions by enabling automated fatigue-based interventions. Through adjustment of intervention timing and intensity decay rate, designers can explore and control the trade-off between fatigue reduction and potential effects such as decreased body ownership. We validated AlphaPIG's effectiveness through a study (N=22) implementing the widely-used Go-Go technique. Results demonstrated that AlphaPIG significantly reduces shoulder fatigue compared to non-adaptive Go-Go, while maintaining comparable perceived body ownership and agency. Based on these findings, we discuss positive and negative perceptions of the intervention. By integrating real-time fatigue prediction with adaptive intervention mechanisms, AlphaPIG constitutes a critical first step towards creating fatigue-aware applications in XR.
翻译:暂无翻译