Prediction of the real-time multiplayer online battle arena (MOBA) games' match outcome is one of the most important and exciting tasks in Esports analytical research. This research paper predominantly focuses on building predictive machine and deep learning models to identify the outcome of the Dota 2 MOBA game using the new method of multi-forward steps predictions. Three models were investigated and compared: Linear Regression (LR), Neural Networks (NN), and a type of recurrent neural network Long Short-Term Memory (LSTM). In order to achieve the goals, we developed a data collecting python server using Game State Integration (GSI) to track the real-time data of the players. Once the exploratory feature analysis and tuning hyper-parameters were done, our models' experiments took place on different players with dissimilar backgrounds of playing experiences. The achieved accuracy scores depend on the multi-forward prediction parameters, which for the worse case in linear regression 69\% but on average 82\%, while in the deep learning models hit the utmost accuracy of prediction on average 88\% for NN, and 93\% for LSTM models.


翻译:实时多玩者在线竞技场(MOBA)游戏匹配结果的预测是Esports分析研究中最重要和最令人兴奋的任务之一。本研究论文主要侧重于建立预测机和深度学习模型,以便利用新的多向前步骤预测方法确定Dota 2 MOBA游戏的结果。对三种模型进行了调查和比较:线性回归(LR)、神经网络(NN)和一种经常性神经网络长期短期内存(LSTM)等。为了实现目标,我们开发了一个数据收集 Python服务器,利用游戏国家整合(GSI)跟踪玩家的实时数据。一旦进行了探索性特征分析和调整,我们的模型就对不同背景的玩家进行了实验。实现的准确度分数取决于多向前预测参数,在线性回归(69 ⁇ )和平均82 ⁇ (82 ⁇ )中情况更糟,而在深层次学习模型中,对NNN平均88 ⁇ 和LSTM模型(93 ⁇ )进行了最精确的预测。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
18+阅读 · 2019年1月16日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员