Quantum annealing has been actively researched since D-Wave Systems produced the first commercial machine in 2011. Controlling a large fleet of automated guided vehicles is one of the real-world applications utilizing quantum annealing. In this study, we propose a formulation to control the traveling routes to minimize the travel time. We validate our formulation through simulation in a virtual plant and authenticate the effectiveness for faster distribution compared to a greedy algorithm that does not consider the overall detour distance. Furthermore, we utilize reverse annealing to maximize the advantage of the D-Wave's quantum annealer. Starting from relatively good solutions obtained by a fast greedy algorithm, reverse annealing searches for better solutions around them. Our reverse annealing method improves the performance compared to standard quantum annealing alone and performs up to 10 times faster than the strong classical solver, Gurobi. This study extends a use of optimization with general problem solvers in the application of multi-AGV systems and reveals the potential of reverse annealing as an optimizer.
翻译:自D-Wave Systems于2011年生产了第一台商用机器以来,一直在积极研究量子肛门,自D-Wave Systems于2011年生产了第一台商用机器以来,对大批自动制导车辆进行控制是使用量子射线的实际应用之一。在本研究中,我们提议了一种配方来控制旅行路线,以尽量减少旅行时间。我们通过虚拟工厂的模拟验证我们的配方,并验证与不考虑整体偏离距离的贪婪算法相比,更快分配效率的效益。此外,我们利用反向喷射来最大限度地利用D-Wave的量子射线仪的优势。从快速贪婪算法获得的相对不错的解决方案开始,扭转在它们周围寻找更好的解决办法的反射线搜索。我们的反射方法提高了与标准的量射线单体相比的性能,并且比强大的古典求解器Gurobi的速快10倍。这项研究在应用多AGV系统时扩大了对一般问题解算器的优化应用,并揭示了逆射线作为优化者的潜力。