We present DOME, a novel method for one-shot imitation learning, where a task can be learned from just a single demonstration and then be deployed immediately, without any further data collection or training. DOME does not require prior task or object knowledge, and can perform the task in novel object configurations and with distractors. At its core, DOME uses an image-conditioned object segmentation network followed by a learned visual servoing network, to move the robot's end-effector to the same relative pose to the object as during the demonstration, after which the task can be completed by replaying the demonstration's end-effector velocities. We show that DOME achieves near 100% success rate on 7 real-world everyday tasks, and we perform several studies to thoroughly understand each individual component of DOME. Videos and supplementary material are available at: https://www.robot-learning.uk/dome .
翻译:我们提出DOME, 这是一种一次性模仿学习的新方法, 任务可以只从一个演示中学习, 然后立即部署, 无需任何进一步的数据收集或培训。 DOME 不需要先前的任务或对象知识, 也可以用新颖的物体配置和分流器来完成任务。 DOME 在其核心部分中, 使用一个图像化对象分割网络, 并随后使用一个有知识的视觉筛选网络, 将机器人的终端效应器移到与演示期间的物体相同的位置上, 然后通过重播演示的终端效应或速度来完成任务。 我们显示 DOME 在7个现实世界的日常任务中几乎实现了100%的成功率, 我们进行了几项研究, 以彻底理解 DOME 的每个组成部分。 视频和补充材料可以在 https:// www.robot- learning.uk/dome 上查阅 。