In this paper, we prove a compressive sensing guarantee for restricted measurement domains in spherical near-field to far-field transformations for antenna metrology. We do so by first defining Slepian functions on a measurement sub-domain $R$ of the rotation group $\mathrm{SO}(3)$, the full domain of the linear inverse problem associated with spherical near-field to far-field transformations. Then, we transform the inverse problem from the measurement basis, the bounded orthonormal system of band-limited Wigner $D$-functions on $\mathrm{SO}(3)$, to the Slepian functions in a way that preserves sparsity. Contrasting methods using Wigner $D$-functions that require measurements on all of $\mathrm{SO}(3)$, we show that the orthogonality structure of the Slepian functions only requires measurements on the sub-domain $R$, which is select-able. Due to the particulars of this approach and the inherent presence of Slepian functions with low concentrations on $R$, our approach gives the highest accuracy when the signal under study is well concentrated on $R$. We provide numerical examples of our method in comparison with other classical and compressive sensing approaches. In terms of reconstruction quality, we find that our method outperforms the other compressive sensing approaches we test and is at least as good as classical approaches but with a significant reduction in the number of measurements.
翻译:在本文中, 我们证明是一个限制测量域的压缩感应保证, 在球性近场测量到远场天线计量仪转换。 我们这样做的方法是首先在旋转组$\mathrm{SO}(3)$的测量子域上定义 Slepian 函数 。 在旋转组$\ mathrm{SO}(3)$的测量子域上, 与球性近场到远场转换相关的线性反问题的全部领域。 然后, 我们从测量基点上转变反向问题, 带- 带- D$- 功能在 $\ mathrm{SO}(3) $ 上的约束性正态系统。 我们首先定义Slepian 函数, 以保持偏差的方式保存 Slepian 函数 。 使用Wigner $D- 函数的对比方法, 需要测量所有 $( mathrm{SO) 3美元 。 我们显示, Slepian 函数的垂直度结构结构结构, 仅要求测量亚性 $ 的亚值 。 由于我们这个方法的特殊性,, 以及Sleplepian 的内在存在最低的精确 方法, 我们的精确性 方法 方法 提供了我们 的精确性 的精确性 方法, 我们的精确性 。