Centrality measures for simple graphs are well-defined and several main-memory algorithms exist for each. Simple graphs are not adequate for modeling complex data sets with multiple entities and relationships. Multilayer networks (MLNs) have been shown to be better suited, but there are very few algorithms for centrality computation directly on MLNs. They are converted (aggregated or collapsed) to simple graphs using Boolean AND or OR operators to compute centrality, which is not only inefficient but incurs a loss of structure and semantics. In this paper, we propose algorithms that compute closeness centrality on an MLN directly using a novel decoupling-based approach. Individual results of layers (or simple graphs) of an MLN are used and a composition function developed to compute the centrality for the MLN. The challenge is to do this accurately and efficiently. However, since these algorithms do not have complete information of the MLN, computing a global measure such as closeness centrality is a challenge. Hence, these algorithms rely on heuristics derived from intuition. The advantage is that this approach lends itself to parallelism and is more efficient compared to the traditional approach. We present two heuristics for composition and experimentally validate accuracy and efficiency on a large number of synthetic and real-world graphs with diverse characteristics.
翻译:简单图形的中央度度量是明确界定的,每种图形都有几种主模算法。 简单图表不足以模拟与多个实体和关系建立起来的复杂数据集。 多层网络( MLNs) 已证明更合适, 但用于直接计算 MLNs 的中央度值的算法却很少。 它们被转换为( 汇总或崩溃) 使用 Boolean 和 或 操作员来计算中心度的简单图表, 不仅效率低下, 而且还造成结构和语义学损失。 因此, 在本文中, 我们建议采用新颖的脱钩法直接计算MLN 的密切度中心点。 使用多层网络的单个结果( 或简单图形) 来计算 MLN 的中央度。 使用多层( 或简单图表) 来直接计算 MLN 。 但是, 这些算法并不完全掌握 MLN 的中央度信息, 并且计算出类似性的核心度中心度等全球计量方法是一项挑战。 因此, 这些算法依靠从直觉中得出的超常识论, 和合成图案本的精度, 我们的精度的精度比的精度, 的精度比的精度, 的精度, 的精度, 的精度比的精度, 的精度和合成的精度, 的精度, 的精准性是比的精度和合成的精度, 的精度的精度的精度, 的精度的精度, 的精度, 的精度, 的精度是比的精度是当前的精度, 的精度, 的精度是比的精度和合成的精度和合成的精度是比的精度的精度的精度的精度的精度, 。