We revisit the so-called compressed oracle technique, introduced by Zhandry for analyzing quantum algorithms in the quantum random oracle model (QROM). To start off with, we offer a concise exposition of the technique, which easily extends to the parallel-query QROM, where in each query-round the considered algorithm may make several queries to the QROM in parallel. This variant of the QROM allows for a more fine-grained query-complexity analysis. Our main technical contribution is a framework that simplifies the use of (the parallel-query generalization of) the compressed oracle technique for proving query complexity results. With our framework in place, whenever applicable, it is possible to prove quantum query complexity lower bounds by means of purely classical reasoning. More than that, for typical examples the crucial classical observations that give rise to the classical bounds are sufficient to conclude the corresponding quantum bounds. We demonstrate this on a few examples, recovering known results (like the optimality of parallel Grover), but also obtaining new results (like the optimality of parallel BHT collision search). Our main target is the hardness of finding a $q$-chain with fewer than $q$ parallel queries, i.e., a sequence $x_0, x_1,\ldots, x_q$ with $x_i = H(x_{i-1})$ for all $1 \leq i \leq q$. The above problem of finding a hash chain is of fundamental importance in the context of proofs of sequential work. Indeed, as a concrete cryptographic application of our techniques, we prove that the "Simple Proofs of Sequential Work" proposed by Cohen and Pietrzak remains secure against quantum attacks. Such an analysis is not simply a matter of plugging in our new bound; the entire protocol needs to be analyzed in the light of a quantum attack. Thanks to our framework, this can now be done with purely classical reasoning.


翻译:我们重新审视了Zhandry为分析量子随机随机模型(QROM)中的量子算法而引入的所谓压缩或触角技术。 首先,我们提供一个简明的技术解析框架,该技术可以很容易地延伸至平行查询的QROM, 在每个查询回合中, 考虑的算法可以平行地向QROM提出数个问题。 这个QROM的变式可以进行更细微的查询兼容性分析。 我们的主要技术贡献是一个简化使用( 平行查询的) 用于证明查询复杂结果的压缩或触角技术( QROM ) 的框架。 在我们的链框架中, 只要使用纯经典推理的推理推理方法, 就可以证明数量的复杂性。 在几个例子中, 将已知的结果恢复到平行攻击的最优度( 类似同步的), 并获得新的结果( 如平行的 BHT 碰撞搜索最优性) 。 我们的主要目标, 与直径 直径的 直径 直径= 直径 直径 分析 。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
百页Python编程指南
专知会员服务
69+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关VIP内容
百页Python编程指南
专知会员服务
69+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员