Let $\mathcal{D}$ be a dataset of smooth 3D-surfaces, partitioned into disjoint classes $\mathit{CL}_j$, $j= 1, \ldots, k$. We show how optimized diffeomorphic registration applied to large numbers of pairs $S,S' \in \mathcal{D}$ can provide descriptive feature vectors to implement automatic classification on $\mathcal{D}$, and generate classifiers invariant by rigid motions in $\mathbb{R}^3$. To enhance accuracy of automatic classification, we enrich the smallest classes $\mathit{CL}_j$ by diffeomorphic interpolation of smooth surfaces between pairs $S,S' \in \mathit{CL}_j$. We also implement small random perturbations of surfaces $S\in \mathit{CL}_j$ by random flows of smooth diffeomorphisms $F_t:\mathbb{R}^3 \to \mathbb{R}^3$. Finally, we test our automatic classification methods on a cardiology data base of discretized mitral valve surfaces.
翻译:让 $mathcal{D} $ 成为平滑 3D 表面的数据集, 以 $\ mathbb{R} 3$ 的硬动作生成变异性分类器。 为了提高自动分类的准确性, 我们通过对双体间平滑的表面进行二变色化的二变色化分析, 以 $S, S'in\ mathcal{D} $ 显示如何优化地变异性登记, 以 $\ mathcal{D} $ 进行自动分类, 并用 $\ mathbb{R} 3$ 生成变异性分类器。 为了提高自动分类的准确性, 我们通过对双体间平滑的表面进行二变色化分析, $S' in\ mathcathcal {CL_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_ 3 我们的自动地面数据解析基卡 。