In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an element of the quotient space of $M^n$ modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when $M$ is a manifold or path-metric space, respectively. These results are non-trivial even when $M$ is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on $M$. We exhibit Fr\'echet means and $k$-means as metric projections onto 1-skeleta or $k$-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
翻译:在统计中,独立、同样分布的随机样本并不具有自然顺序,而且其统计数据在排列顺序上通常变化不定。因此,在一个空间中,一个美美美元样本可以被视为一个数字空间的一个要素,即$M$的模版。本文件将这个样本空间的定义和相关的轨道类型概念作为制定统计几何视角的起点。我们的目标是为研究空间从平滑的里曼尼多管到一般平坦空间的空间的经验和人口手段的行为而设定一个一般的数学设置。当美元是一个多元或几何空间时,我们充分描述该样本空间的两重和路径结构。这些结果即使当美元是欧几里德纳多变组时也是非三角的。我们表明,无限的样本空间空间存在于格罗莫夫-豪斯多夫夫的形态中,与瓦塞斯坦的概率分布空间在$M$上。我们用Fr\'echchele 和方略度结构图中,我们用这种平价和方位图来定义我们方平面和方平面的方位空间图。