Objective: This paper proposes a deep learning model for breast cancer detection from reconstructed images of microwave imaging scan data and aims to improve the accuracy and efficiency of breast tumor detection, which could have a significant impact on breast cancer diagnosis and treatment. Methods: Our framework consists of different convolutional neural network (CNN) architectures for feature extraction and a region-based CNN for tumor detection. We use 7 different architectures: DenseNet201, ResNet50, InceptionV3, InceptionResNetV3, MobileNetV2, NASNetMobile and NASNetLarge and compare its performance to find the best architecture out of the seven. An experimental dataset of MRI-derived breast phantoms was used. Results: NASNetLarge is the best architecture which can be used for the CNN model with accuracy of 88.41% and loss of 27.82%. Given that the model's AUC is 0.786, it can be concluded that it is suitable for use in its present form, while it could be improved upon and trained on other datasets that are comparable. Impact: One of the main causes of death in women is breast cancer, and early identification is essential for enhancing the results for patients. Due to its non-invasiveness and capacity to produce high-resolution images, microwave imaging is a potential tool for breast cancer screening. The complexity of tumors makes it difficult to adequately detect them in microwave images. The results of this research show that deep learning has a lot of potential for breast cancer detection in microwave images


翻译:摘要:本文提出了一种基于深度学习的乳腺癌检测模型,用于从微波成像扫描数据的重建图像中改善乳腺肿瘤检测的准确性和效率。该模型的目标是极大地提升乳腺肿瘤的诊断和治疗效果。 方法:我们的框架包括不同卷积神经网络(CNN)的架构来提取特征和基于区域的CNN来检测肿瘤。我们使用7种不同的架构:DenseNet201,ResNet50,InceptionV3,InceptionResNetV3,MobileNetV2,NASNetMobile和NASNetLarge,并比较它们的性能以找到最佳架构。我们使用了一个MRI衍生的乳房模型的实验数据集。 结果:NASNetLarge是最佳的架构,可以用于CNN模型,其准确率为88.41% ,损失为27.82% 。由于该模型的AUC为0.786,可以得出结论,它适用于目前的形式,同时也可以改进和训练其他可比较的数据集。 影响:妇女死亡的主要原因之一是乳腺癌,早期发现对提高患者的疗效至关重要。由于微波成像具有非侵入性和生产高分辨率图像的能力,因此是乳腺癌筛查的潜在工具。肿瘤的复杂性使得在微波图像中正确地检测它们变得困难。这项研究的结果表明,深度学习对于乳腺癌微波图像的检测具有很大的潜力。

0
下载
关闭预览

相关内容

浙大《深度学习低样本目标检测》综述论文
专知会员服务
74+阅读 · 2021年12月13日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
浙大《深度学习低样本目标检测》综述论文
专知会员服务
74+阅读 · 2021年12月13日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员