Representation learning of spatial and geographic data is a rapidly developing field which allows for similarity detection between areas and high-quality inference using deep neural networks. Past approaches however concentrated on embedding raster imagery (maps, street or satellite photos), mobility data or road networks. In this paper we propose the first approach to learning vector representations of OpenStreetMap regions with respect to urban functions and land-use in a micro-region grid. We identify a subset of OSM tags related to major characteristics of land-use, building and urban region functions, types of water, green or other natural areas. Through manual verification of tagging quality, we selected 36 cities were for training region representations. Uber's H3 index was used to divide the cities into hexagons, and OSM tags were aggregated for each hexagon. We propose the hex2vec method based on the Skip-gram model with negative sampling. The resulting vector representations showcase semantic structures of the map characteristics, similar to ones found in vector-based language models. We also present insights from region similarity detection in six Polish cities and propose a region typology obtained through agglomerative clustering.


翻译:空间和地理数据的代表性学习是一个迅速发展的领域,它使得能够利用深神经网络在各地区和高质量推断中发现相似之处,而过去的方法集中于嵌入光栅图像(地图、街道或卫星照片)、移动数据或公路网络。本文件提出了关于城市功能和微观区域网中土地利用的OpenStreetMap区域矢量的学习方式的第一个方法。我们确定了与土地使用、建筑和城市区域功能、水、绿色或其他自然区域的主要特点、水的类型、绿色或其他自然区域有关的OSM标签子集。我们通过人工核查标记质量,选择了36个城市作为区域代表。Uber的H3指数用于将城市分为六边形,对每个六边形进行了汇总。我们提出了基于带有负面抽样的Sppkid-gram模型的Exx2c方法。由此形成的矢量代表展示了地图特征的语性结构,类似于基于病媒语言模型的特征。我们还介绍了在六个波兰城市进行区域类似检测的洞察的洞察,并提出了通过一个群集获得的区域类型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
7+阅读 · 2020年9月17日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
3+阅读 · 2017年9月14日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员