We consider the lower bounds of differentially private empirical risk minimization for general convex functions in this paper. For convex generalized linear models (GLMs), the well-known tight bound of DP-ERM in the constrained case is $\tilde{\Theta}(\frac{\sqrt{p}}{\epsilon n})$, while recently, \cite{sstt21} find the tight bound of DP-ERM in the unconstrained case is $\tilde{\Theta}(\frac{\sqrt{\text{rank}}}{\epsilon n})$ where $p$ is the dimension, $n$ is the sample size and $\text{rank}$ is the rank of the feature matrix of the GLM objective function. As $\text{rank}\leq \min\{n,p\}$, a natural and important question arises that whether we can evade the curse of dimensionality for over-parameterized models where $n\ll p$, for more general convex functions beyond GLM. We answer this question negatively by giving the first and tight lower bound of unconstrained private ERM for the general convex function, matching the current upper bound $\tilde{O}(\frac{\sqrt{p}}{n\epsilon})$ for unconstrained private ERM. We also give an $\Omega(\frac{p}{n\epsilon})$ lower bound for unconstrained pure-DP ERM which recovers the result in the constrained case.


翻译:我们认为本文中将普通 convex 函数的不同私人经验风险最小化的下限范围为 $\ talde} 。 对于 comvex 通用线性模型( GLM ), 在受限制的情况下, DP- ERM 的已知严格约束范围是$\ tilde $( gLM ) (\ frac \ sqrt{p\\\ epsilon n} 美元), 而最近,\ cite{ stt} 发现 DP- ERM 在不受限制的情况下, DP- ERM 的严格约束范围是$( franc) $( franc) 美元 (freac) 美元, 美元(freenn\ crtrt= 美元), 美元(n\ cluslusionx 范围是 范围, 美元) 美元(nrequestal relatenlational rlational) 。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
专知会员服务
51+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
数据分析师应该知道的16种回归技术:分位数回归
数萃大数据
29+阅读 · 2018年8月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
已删除
将门创投
5+阅读 · 2018年1月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月17日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
数据分析师应该知道的16种回归技术:分位数回归
数萃大数据
29+阅读 · 2018年8月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
已删除
将门创投
5+阅读 · 2018年1月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员