We study a variant of Min Cost Flow in which the flow needs to be connected. Specifically, in the Connected Flow problem one is given a directed graph $G$, along with a set of demand vertices $D \subseteq V(G)$ with demands $\mathsf{dem}: D \rightarrow \mathbb{N}$, and costs and capacities for each edge. The goal is to find a minimum cost flow that satisfies the demands, respects the capacities and induces a (strongly) connected subgraph. This generalizes previously studied problems like the (Many Visits) TSP. We study the parameterized complexity of Connected Flow parameterized by $|D|$, the treewidth $tw$ and by vertex cover size $k$ of $G$ and provide: (i) $\mathsf{NP}$-completeness already for the case $|D|=2$ with only unit demands and capacities and no edge costs, and fixed-parameter tractability if there are no capacities, (ii) a fixed-parameter tractable $\mathcal{O}^{\star}(k^{\mathcal{O}(k)})$ time algorithm for the general case, and a kernel of size polynomial in $k$ for the special case of Many Visits TSP, (iii) a $|V(G)|^{\mathcal{O}(tw)}$ time algorithm and a matching $|V(G)|^{o(tw)}$ time conditional lower bound conditioned on the Exponential Time Hypothesis. To achieve some of our results, we significantly extend an approach by Kowalik et al.~[ESA'20].
翻译:具体地说,在连接流程问题中,我们研究了一个需要连接流量的最小成本流变量。 具体地说, 在连接流程问题中, 一个给出了一个直接的图形 $G$, 以及一组需求峰值 $D = subseteq V( G)$, 需要$\ mathsf{dem} : D\ rightrow\ mathb{N} 以及每个边缘的成本和能力。 目标是找到一个满足需求的最小成本流, 尊重能力, 并引出一个( 强) 连接的子流。 这概括了之前研究过的问题, 比如 (Man访问) TSP。 我们研究了连接流程参数的参数复杂性, 由$D $, 树枝节$ww$, 以及由电流覆盖大小 $k$, 并且提供:(一) 美元\\\\\\\\\\\\\\ 2美元, 美元, 对于案件来说, 仅用单位需求和能力, 和不边缘成本。