In this paper, we present our solution to the MuSe-Humor sub-challenge of the Multimodal Emotional Challenge (MuSe) 2022. The goal of the MuSe-Humor sub-challenge is to detect humor and calculate AUC from audiovisual recordings of German football Bundesliga press conferences. It is annotated for humor displayed by the coaches. For this sub-challenge, we first build a discriminant model using the transformer module and BiLSTM module, and then propose a hybrid fusion strategy to use the prediction results of each modality to improve the performance of the model. Our experiments demonstrate the effectiveness of our proposed model and hybrid fusion strategy on multimodal fusion, and the AUC of our proposed model on the test set is 0.8972.
翻译:在本文中,我们介绍了2022年多模式情感挑战(MuSe-Humor)的Muse-Humor亚挑战的解决方案。Muse-Humor亚挑战的目标是从德国足球(Bundesliga)记者招待会的音像录音中检测幽默并计算AUC,这是导师们展示的幽默的附加说明。对于这一次挑战,我们首先利用变压器模块和BILSTM模块来构建一个共和模式,然后提出混合战略,利用每种模式的预测结果来改进模型的性能。我们的实验表明,我们拟议的多式联运模式和混合战略的有效性,而我们关于测试成套模式的拟议模式的AUC是0.8972。