Open relation extraction (OpenRE) is the task of extracting relation schemes from open-domain corpora. Most existing OpenRE methods either do not fully benefit from high-quality labeled corpora or can not learn semantic representation directly, affecting downstream clustering efficiency. To address these problems, in this work, we propose a novel learning framework named MORE (Metric learning-based Open Relation Extraction). The framework utilizes deep metric learning to obtain rich supervision signals from labeled data and drive the neural model to learn semantic relational representation directly. Experiments result in two real-world datasets show that our method outperforms other state-of-the-art baselines. Our source code is available on Github.
翻译:开放关系提取( OpenRE) 是从开放域域公司中提取关系计划的任务。 大部分现有的 OpenRE 方法要么没有从高质量的标签公司中充分受益,要么无法直接学习语义表达,从而影响下游集群效率。 为了解决这些问题,我们在此工作中提议了一个名为“更多”的新学习框架( 基于数学的基于学习的开放关系提取 ) 。 这个框架利用深层次的计量学习从标签数据中获取丰富的监督信号,并驱动神经模型直接学习语义关系表达。 实验的结果是两个真实世界的数据集显示,我们的方法优于其他最先进的基线。 我们的源代码可以在 Github 上查阅 。