Span-based joint extraction simultaneously conducts named entity recognition (NER) and relation extraction (RE) in text span form. Recent studies have shown that token labels can convey crucial task-specific information and enrich token semantics. However, as far as we know, due to completely abstain from sequence tagging mechanism, all prior span-based work fails to use token label in-formation. To solve this problem, we pro-pose Sequence Tagging enhanced Span-based Network (STSN), a span-based joint extrac-tion network that is enhanced by token BIO label information derived from sequence tag-ging based NER. By stacking multiple atten-tion layers in depth, we design a deep neu-ral architecture to build STSN, and each atten-tion layer consists of three basic attention units. The deep neural architecture first learns seman-tic representations for token labels and span-based joint extraction, and then constructs in-formation interactions between them, which also realizes bidirectional information interac-tions between span-based NER and RE. Fur-thermore, we extend the BIO tagging scheme to make STSN can extract overlapping en-tity. Experiments on three benchmark datasets show that our model consistently outperforms previous optimal models by a large margin, creating new state-of-the-art results.
翻译:以 Span 为基础的联合抽取同时以文本范围的形式同时进行命名实体识别( NER) 和关系提取( RE) 。 最近的研究显示, 象征性标签可以传递关键的任务特定信息, 并丰富象征性语义。 但是, 据我们所知, 由于完全不使用序列标记机制, 所有先前的基于跨的工作都未能在设置中使用象征性标签。 为了解决这个问题, 我们提出基于Span 的强化 Span 网络( STSN), 这是一种基于跨序列的联合外加网络, 通过基于基于标记的 NER 的序列标记标签信息, 以基于跨序列的 BIO 标签信息来增强。 通过在深度堆叠多个特定任务的信息, 我们设计了一个深厚的中空结构来建立STSN, 并且每个基于十进层的图层由三个基本关注单位组成。 深层的神经结构首先学习代号标签和基于跨区域联合抽取( STSNSN) 的语义表达, 然后在它们之间构建一个基于跨区域NER 和 RE. Ferter 之间的双向信息, 我们将BIO 基模型扩展的BIO 模型扩展比值模型扩展模型扩展了我们以前的模型, 展示了一个新的模型, 显示一个连续的模型。