Separating environmental effects from those of interspecific interactions on species distributions has always been a central objective of community ecology. Despite years of effort in analysing patterns of species co-occurrences and the developments of sophisticated tools, we are still unable to address this major objective. A key reason is that the wealth of ecological knowledge is not sufficiently harnessed in current statistical models, notably the knowledge on interspecific interactions.Here, we develop ELGRIN, a statistical model that simultaneously combines knowledge on interspecific interactions (i.e., the metanetwork), environmental data and species occurrences to tease apart their relative effects on species distributions. Instead of focusing on single effects of pairwise species interactions, which have little sense in complex communities, ELGRIN contrasts the overall effect of species interactions to that of the environment.Using various simulated and empirical data, we demonstrate the suitability of ELGRIN to address the objectives for various types of interspecific interactions like mutualism, competition and trophic interactions. Data on ecological networks are everyday increasing and we believe the time is ripe to mobilize these data to better understand biodiversity patterns. ELGRIN provides this opportunity to unravel how interspecific interactions actually influence species distributions.


翻译:尽管多年来一直努力分析物种共生模式和尖端工具的发展,但我们仍无法实现这一主要目标。一个关键的原因是,在目前的统计模型中,没有充分利用丰富的生态知识,特别是关于不同物种间相互作用的知识。这里,我们开发了ELGRIN,这是一个统计模型,同时将关于不同物种间相互作用(即元网络)、环境数据和物种发生情况的知识结合起来,以拆分其对物种分布的相对影响。尽管多年来一直努力分析物种共生模式和复杂工具的发展,但我们仍无法实现这一主要目标。ELGRIN将物种间相互作用的总体影响与环境的总体影响作对比。 我们利用各种模拟和经验数据,证明ELGRIN适合实现诸如相互关系、竞争和营养互动等各类不同类型不同相互作用的目标。关于生态网络的数据每天都在不断增长,我们认为利用这些数据来更好地了解生物多样性模式的时机已经成熟。ELGRIN提供了这一机会,可以打破物种间相互作用的实际影响。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员