Separating environmental effects from those of interspecific interactions on species distributions has always been a central objective of community ecology. Despite years of effort in analysing patterns of species co-occurrences and the developments of sophisticated tools, we are still unable to address this major objective. A key reason is that the wealth of ecological knowledge is not sufficiently harnessed in current statistical models, notably the knowledge on interspecific interactions.Here, we develop ELGRIN, a statistical model that simultaneously combines knowledge on interspecific interactions (i.e., the metanetwork), environmental data and species occurrences to tease apart their relative effects on species distributions. Instead of focusing on single effects of pairwise species interactions, which have little sense in complex communities, ELGRIN contrasts the overall effect of species interactions to that of the environment.Using various simulated and empirical data, we demonstrate the suitability of ELGRIN to address the objectives for various types of interspecific interactions like mutualism, competition and trophic interactions. Data on ecological networks are everyday increasing and we believe the time is ripe to mobilize these data to better understand biodiversity patterns. ELGRIN provides this opportunity to unravel how interspecific interactions actually influence species distributions.
翻译:尽管多年来一直努力分析物种共生模式和尖端工具的发展,但我们仍无法实现这一主要目标。一个关键的原因是,在目前的统计模型中,没有充分利用丰富的生态知识,特别是关于不同物种间相互作用的知识。这里,我们开发了ELGRIN,这是一个统计模型,同时将关于不同物种间相互作用(即元网络)、环境数据和物种发生情况的知识结合起来,以拆分其对物种分布的相对影响。尽管多年来一直努力分析物种共生模式和复杂工具的发展,但我们仍无法实现这一主要目标。ELGRIN将物种间相互作用的总体影响与环境的总体影响作对比。 我们利用各种模拟和经验数据,证明ELGRIN适合实现诸如相互关系、竞争和营养互动等各类不同类型不同相互作用的目标。关于生态网络的数据每天都在不断增长,我们认为利用这些数据来更好地了解生物多样性模式的时机已经成熟。ELGRIN提供了这一机会,可以打破物种间相互作用的实际影响。