Multiple imputation (MI) is an established technique to handle missing data in observational studies. Joint modeling (JM) and fully conditional specification (FCS) are commonly used methods for imputing multilevel clustered data. However, MI approaches for ordinal clustered outcome variables have not been well studied, especially when there is informative cluster size (ICS). The purpose of this study is to describe different imputation and analysis strategies for the multilevel ordinal outcome when ICS exists. We conducted comprehensive Monte Carlo simulation studies to compare five different methods: complete case analysis (CCA), FCS, FCS+CS (include cluster size (CS) when performing the imputation), JM, and JM+CS under different scenarios. We evaluated their performances using an proportional odds logistic regression model estimated with cluster weighted generalized estimating equations (CWGEE). The simulation results show that including cluster size in imputation can significantly improve imputation accuracy when ICS exists. FCS provides more accurate and robust estimation than JM, followed by CCA for multilevel ordinal outcomes. We further applied those methods to a real dental study.
翻译:在观测研究中,联合模型(JM)和完全有条件的规格(FCS)是估算多层集束数据常用的方法。然而,对类集结果变量的MI方法研究得不够,特别是在有信息性集束规模(ICS)的情况下。本研究的目的是描述在ICS存在时对多层次或多层次结果的不同估算和分析战略。我们进行了全面的蒙特卡洛模拟研究,比较了五种不同方法:完整的案例分析(CCA)、FCS、FCS+CS(包括在不同情况下进行估算时的集束规模)、JM和JM+CS(包括集束规模),我们使用以集束加权通用估计方程式估计的按比例误差后勤回归模型(CWGEEE)评估了它们的绩效。模拟结果表明,在ICS存在时,包括集束规模可以大大提高估算的准确度。FCSCS提供了比JM更准确和可靠的估计,随后是用于多层次或多层次结果的CC。我们还将这些方法应用于真正的牙科研究。我们进一步运用了这些方法。