A growing family of approaches to causal inference rely on Bayesian formulations of assumptions that go beyond causal graph structure. For example, Bayesian approaches have been developed for analyzing instrumental variable designs, regression discontinuity designs, and within-subjects designs. This paper introduces simulation-based identifiability (SBI), a procedure for testing the identifiability of queries in Bayesian causal inference approaches that are implemented as probabilistic programs. SBI complements analytical approaches to identifiability, leveraging a particle-based optimization scheme on simulated data to determine identifiability for analytically intractable models. We analyze SBI's soundness for a broad class of differentiable, finite-dimensional probabilistic programs with bounded effects. Finally, we provide an implementation of SBI using stochastic gradient descent, and show empirically that it agrees with known identification results on a suite of graph-based and quasi-experimental design benchmarks, including those using Gaussian processes.
翻译:越来越多的因果推断方法依赖贝叶斯人的假设公式,这些假设超出了因果图表结构的范畴。例如,为分析工具变量设计、回归不连续设计和内科设计开发了贝叶斯人的方法。本文介绍了模拟的可识别性(SBI),这是测试作为概率方案实施的巴伊斯因果推断方法中查询的可识别性的一种程序。履行机构补充了可识别性的分析方法,利用模拟数据的粒子优化方案来确定分析难以分析的模型的可识别性。我们分析了履行机构对于具有边际效应的多种可区分的、有限维度的概率方案的正确性。最后,我们提供了使用随机梯度梯度梯度的履行机构的执行情况,并从经验上表明,履行机构同意基于图表和准实验性设计基准的一套已知识别结果,包括使用高斯进程的基准。