Linear Fisher markets are a fundamental economic model with applications in fair division as well as large-scale Internet markets. In the finite-dimensional case of $n$ buyers and $m$ items, a market equilibrium can be computed using the Eisenberg-Gale convex program. Motivated by large-scale Internet advertising and fair division applications, this paper considers a generalization of a linear Fisher market where there is a finite set of buyers and a continuum of items. We introduce generalizations of the Eisenberg-Gale convex program and its dual to this infinite-dimensional setting, which leads to Banach-space optimization problems. We establish existence of optimal solutions, strong duality, as well as necessity and sufficiency of KKT-type conditions. All these properties are established via non-standard arguments, which circumvent the limitations of duality theory in optimization over infinite-dimensional Banach spaces. Furthermore, we show that there exists a pure equilibrium allocation, i.e., a division of the item space. When the item space is a closed interval and buyers have piecewise linear valuations, we show that the Eisenberg-Gale-type convex program over the infinite-dimensional allocations can be reformulated as a finite-dimensional convex conic program, which can be solved efficiently using off-the-shelf optimization software based on primal-dual interior-point methods. Based on our convex conic reformulation, we develop the first polynomial-time cake-cutting algorithm that achieves Pareto optimality, envy-freeness, and proportionality. For general buyer valuations or a very large number of buyers, we propose computing market equilibrium using stochastic dual averaging, which finds approximate equilibrium prices with high probability. Finally, we discuss how the above results easily extend to the case of quasilinear utilities.


翻译:线性渔业市场是一种基本的经济模型,其应用在公平分割以及大规模互联网市场上。在美元买家和美元项目等有限维度案例中,可以使用Eisenberg-Gale convex程序来计算市场平衡。在大规模互联网广告和公平分割应用的驱动下,本文认为线性渔业市场是典型化的,那里有一套有限的买家和连续的项目。我们引入了艾森堡-Gale convex程序及其与无限自由度的双重设置的概括化,这导致了Banach空间优化问题。我们建立了最佳解决方案的存在,强大的双重性,以及KKKT类型条件的必要性和充足性。所有这些属性都是通过非标准参数建立的,从而避免了对无限版面Banach空间进行优化的双重性理论的局限性。此外,我们展示了一种纯度的平衡分配,即项目空间的分解。当项目空间是一个封闭的间隔,而购买者有直线性评估,这导致Banach-space-space优化问题。我们证明Eisenberg-Gale-alalalalal-alalalalalal-alalalalalalalal-leval-lieval-lieval liversal liversleval lieval-al ladeal 程序在使用一个基于Sildal-sal-sleval-listal-listal-listal-smadal-sal-stal-stal-sal 程序的系统价格基础,我们算算,可以实现一个基于一个稳定的固定式的固定化的系统化的货币-slal-smaxcal-al-smad-sal-smaxcal-smax-smax-smax-sal-sld-sal-sal-sal-sal-smad-sal-sld-sld-sld-smadal-smadal-sal-sal-smad-smad-smad-smad-d-smad-smad-smad-smasmadal-smadal-smasmasmasmad-smasmasld-d-

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年9月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月30日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员