We extend the incremental potential contact (IPC) model [Li et al. 2020a] for contacting elastodynamics to resolve systems composed of arbitrary combinations of codimensional degrees-of-freedoms. This enables a unified, interpenetration-free, robust, and stable simulation framework that couples codimension-0,1,2, and 3 geometries seamlessly with frictional contact. Extending the IPC model to thin structures poses new challenges in computing strain, modeling thickness and determining collisions. To address these challenges we propose three corresponding contributions. First, we introduce a C2 constitutive barrier model that directly enforces strain limiting as an energy potential while preserving rest state. This provides energetically consistent strain limiting models (both isotropic and anisotropic) for cloth that enable strict satisfaction of strain-limit inequalities with direct coupling to both elastodynamics and contact via minimization of the incremental potential. Second, to capture the geometric thickness of codimensional domains we extend IPC to directly enforce distance offsets. Our treatment imposes a strict guarantee that mid-surfaces (mid-lines) of shells (rods) will not move closer than applied thickness values, even as these thicknesses become characteristically small. This enables us to account for thickness in the contact behavior of codimensional structures and so robustly capture challenging contacting geometries; a number of which, to our knowledge, have not been simulated before. Third, codimensional models, especially with modeled thickness, mandate strict accuracy requirements that pose a severe challenge to all existing continuous collision detection (CCD) methods. To address these limitations we develop a new, efficient, simple-to-implement additive CCD (ACCD) method that iteratively refines a lower bound converging to time of impact.
翻译:我们扩展了递增的潜在接触(IPC)模式[Li 等人 2020a], 用于联系 Elastowings 模型[Li et al. 2020a], 以解决由共维度自由度的任意组合组成的系统。 这样可以提供一个统一的、不穿透的、稳健的和稳定的模拟框架, 夫妇可以同时共融- 0, 1, 2 和3 个匹配的模拟框架。 将 IPC 模型推广到稀薄的结构在计算强度、 模型的厚度和确定碰撞方面提出了新的挑战。 为了应对这些挑战, 我们建议了三种相应的贡献。 首先, 我们引入了C2 构成的屏障模型, 直接将限制作为能源潜能的精度的精确度, 并直接强制实施。 这提供了一种坚固度限制的模型( 异端和异端), 能够严格地满足压力的不平等的不平等性模型, 直接连接到电磁度的精度。 其次, 我们的测模型的精确度模型可以直接测量, 我们的中表层( ), 而不是直径方( ) 直径方), 直径的直径的, 和直径直方的岩石的深度的深度的深度的深度,,,, 使这些比 的 的 的深度的深度的深度的深度的模型的模型的模型的模型的模型的模型的特性的特性的特性的特性的特性的测量的模型,,, 的测量的特性的特性的特性的特性的测量的测量的特性的模型的模型的模型的模型的模型的构造的计算,,,, 。