Understanding the gap between simulation and reality is critical for reinforcement learning with legged robots, which are largely trained in simulation. However, recent work has resulted in sometimes conflicting conclusions with regard to which factors are important for success, including the role of dynamics randomization. In this paper, we aim to provide clarity and understanding on the role of dynamics randomization in learning robust locomotion policies for the Laikago quadruped robot. Surprisingly, in contrast to prior work with the same robot model, we find that direct sim-to-real transfer is possible without dynamics randomization or on-robot adaptation schemes. We conduct extensive ablation studies in a sim-to-sim setting to understand the key issues underlying successful policy transfer, including other design decisions that can impact policy robustness. We further ground our conclusions via sim-to-real experiments with various gaits, speeds, and stepping frequencies. Additional Details: https://www.pair.toronto.edu/understanding-dr/.


翻译:理解模拟与现实之间的差距对于与大都经过模拟培训的腿型机器人加强学习至关重要。然而,最近的工作有时导致对哪些因素,包括动态随机化的作用,对于哪些因素对成功非常重要,包括动态随机化的作用,得出了相互矛盾的结论。在本文件中,我们旨在澄清和理解动态随机化在学习拉伊卡戈四重机器人强力移动政策中的作用。与以前对同一机器人模型的工作相比,我们惊讶地发现,直接模拟到实际的转移在没有动态随机化或机器人适应计划的情况下是可能的。我们在模拟到模拟环境中进行了广泛的模拟研究,以了解成功政策转移的关键问题,包括可能影响政策稳健性的其他设计决定。我们进一步通过以各种格子、速度和阶梯频率进行模拟到现实的实验来得出我们的结论。其他详情见:https://www.pair.torontotototo.edu/underadid-dr/。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员