Large-scale place recognition is a fundamental but challenging task, which plays an increasingly important role in autonomous driving and robotics. Existing methods have achieved acceptable good performance, however, most of them are concentrating on designing elaborate global descriptor learning network structures. The importance of feature generalization and descriptor post-enhancing has long been neglected. In this work, we propose a novel method named GIDP to learn a Good Initialization and Inducing Descriptor Poseenhancing for Large-scale Place Recognition. In particular, an unsupervised momentum contrast point cloud pretraining module and a reranking-based descriptor post-enhancing module are proposed respectively in GIDP. The former aims at learning a good initialization for the point cloud encoding network before training the place recognition model, while the later aims at post-enhancing the predicted global descriptor through reranking at inference time. Extensive experiments on both indoor and outdoor datasets demonstrate that our method can achieve state-of-the-art performance using simple and general point cloud encoding backbones.


翻译:大规模地点识别是一项基本但具有挑战性的任务,在自主驾驶和机器人方面发挥着越来越重要的作用。现有的方法已经取得了可接受的良好业绩。但是,大多数方法都集中在设计周密的全球描述性学习网络结构上。特征一般化和描述性说明后增强的重要性长期以来一直被忽视。在这项工作中,我们提出了名为GIDP的新颖方法,以学习良好的初始化和引导描述性说明性说明增强大规模地点识别。特别是,在GIDP中,分别提出了一个未受监督的动力对比点云预培训模块和一个基于分级的描述性说明性后增强模块。前者的目的是在培训地点识别模型之前学习点云编码网络的良好初始化,而后来的目标是通过在推论时间的顺序上重新排序来提升预测的全球描述性说明性说明。关于室内和室外数据集的广泛实验表明,我们的方法可以使用简单和一般的点云编码骨干实现最先进的状态性表现。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning Modular Robot Visual-motor Locomotion Policies
Arxiv
0+阅读 · 2022年10月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员