We formulate selecting the best optimizing system (SBOS) problems and provide solutions for those problems. In an SBOS problem, a finite number of systems are contenders. Inside each system, a continuous decision variable affects the system's expected performance. An SBOS problem compares different systems based on their expected performances under their own optimally chosen decision to select the best, without advance knowledge of expected performances of the systems nor the optimizing decision inside each system. We design easy-to-implement algorithms that adaptively chooses a system and a choice of decision to evaluate the noisy system performance, sequentially eliminates inferior systems, and eventually recommends a system as the best after spending a user-specified budget. The proposed algorithms integrate the stochastic gradient descent method and the sequential elimination method to simultaneously exploit the structure inside each system and make comparisons across systems. For the proposed algorithms, we prove exponential rates of convergence to zero for the probability of false selection, as the budget grows to infinity. We conduct three numerical examples that represent three practical cases of SBOS problems. Our proposed algorithms demonstrate consistent and stronger performances in terms of the probability of false selection over benchmark algorithms under a range of problem settings and sampling budgets.


翻译:我们设计了最优化系统(SBOS)问题,并为这些问题提供了解决办法。在一个SBOS问题中,有一定数目的系统是竞争者。在每个系统中,一个连续的决定变量会影响系统的预期业绩。一个SBOS问题根据它们自己最佳选择的、最佳选择选择最佳的系统的预期业绩,比较了不同的系统。一个SBOS问题根据它们自己最佳选择的、选择最佳选择最佳的系统(SBOS)问题,没有预先了解系统的预期性能,也没有优化每个系统内部的决定。我们设计了容易执行的算法,根据适应性选择一个系统和选择决定来评价系统噪音性能,先后消除低级系统,最终建议一个系统在花费用户指定预算后成为最佳系统。提议的算法结合了随机分析梯度梯度梯度下降法和顺序消除方法,同时利用每个系统内部的结构,并进行系统之间的比较。关于拟议的算法,我们证明随着预算增长到无限,误选的可能性会达到指数的趋同为零。我们举三个数字例子,代表SBOS问题的三个实际案例。我们提议的算法在抽样的概率方面显示了一致和较强的业绩。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员