We study the problem of fairly dividing indivisible goods among a set of agents under the fairness notion of Any Price Share (APS). APS is known to dominate the widely studied Maximin share (MMS). Since an exact APS allocation may not exist, the focus has traditionally been on the computation of approximate APS allocations. Babaioff et al. studied the problem under additive valuations, and asked (i) how large can the APS value be compared to the MMS value? and (ii) what guarantees can one achieve beyond additive functions. We partly answer these questions by considering valuations beyond additive, namely submodular and XOS functions, with binary marginals. For the submodular functions with binary marginals, also known as matroid rank functions (MRFs), we show that APS is exactly equal to MMS. Consequently, we get that an exact APS allocation exists and can be computed efficiently while maximizing the social welfare. Complementing this result, we show that it is NP-hard to compute the APS value within a factor of 5/6 for submodular valuations with three distinct marginals of {0, 1/2, 1}. We then consider binary XOS functions, which are immediate generalizations of binary submodular functions in the complement free hierarchy. In contrast to the MRFs setting, MMS and APS values are not equal under this case. Nevertheless, we show that under binary XOS valuations, $MMS \leq APS \leq 2 \cdot MMS + 1$. Further, we show that this is almost the tightest bound we can get using MMS, by giving an instance where $APS \geq 2 \cdot MMS$. The upper bound on APS, implies a ~0.1222-approximation for APS under binary XOS valuations. And the lower bound implies the non-existence of better than 0.5-APS even when agents have identical valuations, which is in sharp contrast to the guaranteed existence of exact MMS allocation when agent valuations are identical.
翻译:暂无翻译