Gaussian Processes (GP) is a staple in the toolkit of a spatial statistician. Well-documented computing roadblocks in the analysis of large geospatial datasets using Gaussian Processes have now been successfully mitigated via several recent statistical innovations. Nearest Neighbor Gaussian Processes (NNGP) has emerged as one of the leading candidates for such massive-scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse-covariance) matrices. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large-scale realizations of Gaussian random fields, and extensions to non-parametric mean function estimation of a Gaussian Process using Random Forests. We also review a sparse-Cholesky-based model for areal (geographically-aggregated) data that addresses interpretability issues of existing areal models. Finally, we highlight some yet-to-be-addressed issues of such sparse Cholesky approximations that warrants further research.


翻译:高斯进程(GP)是空间统计家工具包中的主机。 使用高斯进程分析大型地理空间数据集的有详细记录的计算路障现已通过最近的一些统计创新而成功减少。 近邻高斯进程(NNGP)因其成功的经验而成为这种大规模地理空间分析的主要候选人之一。 文章回顾了NNGP与空间精确度(逆差)矩阵中稀疏的Cholesky因素的连接。 审查的焦点是这些稀疏的Choolesky矩阵,它们具有多种功能,而且最近发现除了NNGP在空间(一般化)线性模型中主要用于快速参数估计和预测之外,还发现了许多不同的应用。 特别是,我们讨论了NNGP Choolesky矩阵在空间轨迹中解决多方面计算问题的应用,模拟高斯随机场的大规模实现情况,以及利用随机森林扩展高斯进程的非对非对等值功能的估计。 我们还审查了空空空基矩阵矩阵模型在空间(广度)线性模型的主要用途应用,这是目前对空基空间(Slogyal)排序的模型的解释。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月20日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员