In order to create user-centric and personalized privacy management tools, the underlying models must account for individual users' privacy expectations, preferences, and their ability to control their information sharing activities. Existing studies of users' privacy behavior modeling attempt to frame the problem from a request's perspective, which lack the crucial involvement of the information owner, resulting in limited or no control of policy management. Moreover, very few of them take into the consideration the aspect of correctness, explainability, usability, and acceptance of the methodologies for each user of the system. In this paper, we present a methodology to formally model, validate, and verify personalized privacy disclosure behavior based on the analysis of the user's situational decision-making process. We use a model checking tool named UPPAAL to represent users' self-reported privacy disclosure behavior by an extended form of finite state automata (FSA), and perform reachability analysis for the verification of privacy properties through computation tree logic (CTL) formulas. We also describe the practical use cases of the methodology depicting the potential of formal technique towards the design and development of user-centric behavioral modeling. This paper, through extensive amounts of experimental outcomes, contributes several insights to the area of formal methods and user-tailored privacy behavior modeling.


翻译:为了创建以用户为中心的个人隐私管理工具,基本模型必须说明个人用户的隐私期望、偏好及其控制信息分享活动的能力。现有的用户隐私行为研究模型试图从请求的角度来描述问题,因为信息所有人没有关键的参与,导致对政策管理的控制有限或根本没有控制。此外,很少有人考虑系统每个用户对方法的正确性、可解释性、可用性和接受性等方面的问题。本文介绍了根据用户情况决策过程分析,正式模拟、验证和核实个人隐私披露行为的方法。我们使用名为UPPAAL的示范检查工具,通过扩大的限定状态自动数据(FSA)形式代表用户自我报告的隐私披露行为,并通过计算树逻辑(CTL)公式对隐私属性的核查进行可及性分析。我们还介绍了该方法的实际使用案例,该方法描述了正式技术在设计和发展以用户为中心的行为模拟模型方面的潜力。我们使用名为UPPPAAL的示范工具模型,通过广泛数量的实验性了解,代表用户自我报告的隐私披露行为,通过大量的实验性了解,为用户隐私行为领域提供了多种实验性了解结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
38+阅读 · 2021年4月27日
【AAAI2021】生成式Transformer的对比三元组提取
专知会员服务
51+阅读 · 2021年2月7日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月22日
Mining Secure Behavior of Hardware Designs
Arxiv
0+阅读 · 2021年8月20日
Conceptualize and Infer User Needs in E-commerce
Arxiv
3+阅读 · 2019年10月8日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
38+阅读 · 2021年4月27日
【AAAI2021】生成式Transformer的对比三元组提取
专知会员服务
51+阅读 · 2021年2月7日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员