In order to create user-centric and personalized privacy management tools, the underlying models must account for individual users' privacy expectations, preferences, and their ability to control their information sharing activities. Existing studies of users' privacy behavior modeling attempt to frame the problem from a request's perspective, which lack the crucial involvement of the information owner, resulting in limited or no control of policy management. Moreover, very few of them take into the consideration the aspect of correctness, explainability, usability, and acceptance of the methodologies for each user of the system. In this paper, we present a methodology to formally model, validate, and verify personalized privacy disclosure behavior based on the analysis of the user's situational decision-making process. We use a model checking tool named UPPAAL to represent users' self-reported privacy disclosure behavior by an extended form of finite state automata (FSA), and perform reachability analysis for the verification of privacy properties through computation tree logic (CTL) formulas. We also describe the practical use cases of the methodology depicting the potential of formal technique towards the design and development of user-centric behavioral modeling. This paper, through extensive amounts of experimental outcomes, contributes several insights to the area of formal methods and user-tailored privacy behavior modeling.
翻译:为了创建以用户为中心的个人隐私管理工具,基本模型必须说明个人用户的隐私期望、偏好及其控制信息分享活动的能力。现有的用户隐私行为研究模型试图从请求的角度来描述问题,因为信息所有人没有关键的参与,导致对政策管理的控制有限或根本没有控制。此外,很少有人考虑系统每个用户对方法的正确性、可解释性、可用性和接受性等方面的问题。本文介绍了根据用户情况决策过程分析,正式模拟、验证和核实个人隐私披露行为的方法。我们使用名为UPPAAL的示范检查工具,通过扩大的限定状态自动数据(FSA)形式代表用户自我报告的隐私披露行为,并通过计算树逻辑(CTL)公式对隐私属性的核查进行可及性分析。我们还介绍了该方法的实际使用案例,该方法描述了正式技术在设计和发展以用户为中心的行为模拟模型方面的潜力。我们使用名为UPPPAAL的示范工具模型,通过广泛数量的实验性了解,代表用户自我报告的隐私披露行为,通过大量的实验性了解,为用户隐私行为领域提供了多种实验性了解结果。