Facial action unit (FAU) intensities are popular descriptors for the analysis of facial behavior. However, FAUs are sparsely represented when only a few are activated at a time. In this study, we explore the possibility of representing the dynamics of facial expressions by adopting algorithms used for word representation in natural language processing. Specifically, we perform clustering on a large dataset of temporal facial expressions with 5.3M frames before applying the Global Vector representation (GloVe) algorithm to learn the embeddings of the facial clusters. We evaluate the usefulness of our learned representations on two downstream tasks: schizophrenia symptom estimation and depression severity regression. These experimental results show the potential effectiveness of our approach for improving the assessment of mental health symptoms over baseline models that use FAU intensities alone.
翻译:显性动作单位( FAU) 强度是分析面部行为的流行描述符。 但是, 当一次只有少数几个人被激活时, FAU 代表很少。 在本研究中, 我们探讨是否可能通过在自然语言处理中采用用于文字表达的算法来代表面部表达的动态。 具体地说, 在应用全球矢量表示法( GloVe) 算法来了解面部组合的嵌入情况之前, 我们用大量时间面部表达法( 5.3M 框架) 进行分组, 我们使用全球矢量表示法( GloVe) 算法来学习。 我们评估了我们在以下两个下游任务( 精神分裂症症状估计和抑郁症严重程度回归) 上所了解的表述方法的有用性。 这些实验结果显示了我们改进心理健康症状评估的方法相对于仅使用显性度的基线模型的潜在效果。